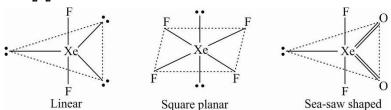


Daily Tutorial Sheet-5 JEE Advanced (Archive)

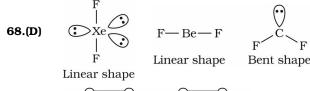
- **61.(B)** When E = B in BCl_3 , bond angle is 120° . When E = P, As or Bi in ECl_3 , hybridization at E will be sp^3 . Also, if central atoms are from same group, bond angle decreases down the group provided all other things are similar. Hence, the order of bond angles is $BCl_3 > PCl_3 > AsCl_3 > BiCl_3$
- **62.(D)** Bond length $\propto \frac{1}{\text{Bond order}}$ Bond order : $CO_2 = 2$, CO = 3, $CO_3^{2-} = 1 + \frac{1}{3} = \frac{4}{3}$.

Therefore, order of bond length is $CO_3^{2-} > CO_2 > CO$

- **64.(A)** H_2S has sp^3 hybridized Sulphur, therefore, angular in shape with non-zero dipole moment.



(Non-linear, polar molecule)


- 65. (2, paramagnetic)
 - (a) $O_2: \sigma ls^2 \overset{*}{\sigma} ls^2 \sigma 2s^2 \overset{*}{\sigma} 2s^2 \sigma 2p_x^2 \left| \begin{matrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{matrix} \right| \begin{matrix} \pi^* 2p_y^l \\ \pi^* 2p_z^l \end{matrix} \right|$

Bond order = $\frac{10-6}{2}$ = 2, paramagnetic.

66. $\begin{array}{c} {\it XeF}_2 \to {\it linear}, {\it XeF}_4 \to {\it square planar} \\ {\it XeO}_2 F_2 \to {\it See-Saw} \end{array}$

67.(A) All three have 14 electrons (iso electronic) with bond order of three.

69.(AC) H C C C H

Pi bond is formed by the p-orbitals whose lobes have minima in the plane of molecule, hence molecular plane and a plane perpendicular to the molecular plane is the nodal plane of pi-bond.

70.(B)
$$\bar{N} = \stackrel{+}{N} = \bar{N}$$
 $\stackrel{H_3Si}{\underset{sp}{\stackrel{}{\nearrow}}} N \Rightarrow SiH_3$ $\stackrel{N}{\underset{sp}{\stackrel{}{\nearrow}}} CH_3$ $\stackrel{N}{\underset{sp}{\stackrel{}{\nearrow}}} CH_3$

- **72.(B)** EA of Be is almost zero so Be is unstable.
- **73.(C)** O_2^- has odd number (17) of electrons, therefore it must contain at least one unpaired electron.
- **74.(A)** CH_3Cl has the highest dipole moment.
- **75.(A)** NO_3^- and CO_3^{2-} both have 32 electrons, central atom sp^2 hybridized, triangular planar.

Solution | workbook-1 42 Chemical Bonding - I & II